

White Cross Offshore Wind Farm ES Addendum

Appendix E: Outline Drainage Strategy

Document Code:	FLO-WHI-REP-0016-05	
Contractor Document Number:	PC2978-RHD-ZZ- XX-RP-Z-0611	
Version Number:	01	
Date:	08/05/2024	
Prepared by:	Ю	Electronic Signature
Checked by:	BA	Electronic Signature
Owned by:	СВ	Electronic Signature
Approved by Client:	OG	Electronic Signature

Version Number	Reason for Issue / Major Changes	Date of Change
00	For issue	11/08/2023
01	Updated for issue	08/05/2024

REPORT

White Cross Offshore Windfarm

Drainage Strategy Report

Client: White Cross Offshore Wind Limited

Reference:S2Status:S2/P4Date:2 May 2024

HASKONINGDHV UK LTD.

2 Abbey Gardens Great College Street London SW1P 3NL United Kingdom Mobility & Infrastructure VAT registration number: 792428892

+44 207 2222115 **T**

info.london@uk.rhdhv.com E

royalhaskoningdhv.com W

Document title:	White Cross Offshore Windfarm
Document short title: Reference: Status: Date: Project name: Project number: Author(s):	Outline Drainage Strategy S2 P4/S2 2 May 2024 White Cross Offshore Windfarm PC2978 IO
Drafted by:	IO
Checked by:	ВА
Date:	02-05-2023
Approved by:	DJ
Date:	02-05-2024

Classification

Open

Unless otherwise agreed with the Client, no part of this document may be reproduced or made public or used for any purpose other than that for which the document was produced. HaskoningDHV UK Ltd. accepts no responsibility or liability whatsoever for this document other than towards the Client.

Open

Please note: this document contains personal data of employees of HaskoningDHV UK Ltd.. Before publication or any other way of disclosing, this report needs to be anonymized, unless anonymisation of this document is prohibited by legislation.

i

Table of Contents

1	Introduction	1
1.1	Background	1
1.2	Purpose of this Document	2
1.3	Comments from the Lead Local Flooding Authority	3
2	Site Description	4
2.1	Site Location	4
2.2	Topography	6
2.3	Geology	6
2.4	Existing Watercourses and Onward Connectivity of Restricted Discharge	6
3	Proposed Drainage Strategy	9
3.2	Proposed Surface Water Strategy	10
4	Water Quality	11
5	Review of Third Party Development	11
6	Conclusions	11
7	References	13

Table of Tables

Table 1.1 The Applicant's responses to LLFA comments	3
Table 2.1 Existing Site Surroundings	5
Table 2.2 Site Location Information	6
Table 3.1 Summary of SuDS Provision	10

Table of Figures

Figure 2.1 Existing Site Location Plan	5
Figure 2.2 Culvert beneath Tarka Trail	7
Figure 2.3 Pond located Northwest of the development site	7
Figure 2.4 Outfall Culvert into Taw Estuary	8
Figure 2.5 Existing bedrock underlying the site (British Geological Society Maps)	8

Appendices

- **Annex 1: Site Location Plan**
- Annex 2: Outline Surface Water Drainage Strategy
- **Annex 3: Hydraulics Calculations**
- Annex 4: Water Quality
- **Annex 5: Surface Water Connectivity Plan**

1 Introduction

1.1 Background

- 1.1.1 Royal HaskoningDHV was commissioned by White Cross Offshore Wind Limited (here in referred to as 'the Applicant') to prepare a Outline Drainage Strategy to support the proposed construction of onshore infrastructure associated with the White Cross Offshore Windfarm.
- 1.1.2 The White Cross Offshore Windfarm is a proposed floating offshore windfarm located in the Celtic Sea with a capacity of up to 100MW. The 'Onshore Project', entailing all infrastructure of the project landward of Mean Low Water Springs (MLWS), requires a Town and Country Planning Act 1990 (TCPA) application. A separate Section 36 (under the Electricity Act 1989) and Marine Licence (ML) application for Offshore Project components (seaward of Mean High Water Springs (MHWS)), which has been submitted as a to the Marine Management Organisation (MMO) following the MMO confirming that they would not consent the Onshore Infrastructure of the Windfarm Project.
- 1.1.3 The Onshore Project includes the infrastructure associated with the Landfall at Saunton Sands (to MLWS) where the onshore elements connect to the Offshore Project infrastructure, Onshore Export Cable (including joint bays and link boxes), Taw Estuary Crossing, a new White Cross Onshore Substation, and an Interconnecting Cable to the Grid Connection Point at the existing East Yelland Substation.
- 1.1.4 The set of consents/permission required in order for the Project as a whole to proceed are outlined below:
 - Planning permission under the Town and Country Planning Act 1990 (TCPA) 1990) is required for the following Onshore Project infrastructure (landward of MLWS):
 - Offshore export cables (from MLWS to above MHWS at the Landfall and Transition Joint Bay (TJB));
 - Onshore export cables (2 x 66 kilovolts (kV) or 1 x 132kV from Landfall to White Cross Onshore Substation and 132kV from the White Cross Onshore Substation to Grid Connection Point) – excluding section below MLWS at the Taw Estuary crossing;
 - White Cross Onshore Substation;
 - Temporary main construction compound and temporary construction compounds;
 - Transition Joint Bay, jointing bays, link boxes, access roads and haul roads; and
 - Grid Connection Point.
 - Consent under the Section 36 of the Electricity Act 1989 and a Marine Licence under the Marine and Coastal Access Act 2009 (MCAA 2009) from the MMO are required for the following generation assets (within the Windfarm Site):
 - Wind Turbine Generators;
 - Semi-submersible floating platforms;

- Subsea catenary mooring lines;
- Anchoring solutions (drag embedment anchors, suction anchor or pin piles);
- o Inter-array cables and associated protection; and
- Other associated offshore infrastructure, such as navigational markers.
- A second Marine Licence is required to enable the option for an Offshore Transmission Owner (OFTO) to be appointed under The Electricity (Competitive Tenders for Offshore Transmission Licences) Regulations 2015 for the following transmission assets (to MHWS):
 - Offshore Substation Platform;
 - Offshore export cable; and
 - Other associated offshore infrastructure, such as navigational markers.
- 1.1.5 The Section 36 and Marine Licences applications were submitted to the MMO on 14th March 2023.
- 1.1.6 Further detail on the consenting regime and relevant legislation is presented in **Chapter 3: Policy** and Legislative Context of the Onshore Project ES.

1.2 Purpose of this Document

- 1.2.1 This document has been revised following comments made by the Lead Local Flooding Authority (LLFA) on **Appendix 5.C: Outline Drainage Strategy Report (Rev 0) of the Onshore Project ES**. Details of the comments and specific responses are presented in **Table 1.1**.
- 1.2.2 The rainfall data has been revised from the Flood Studies Report data to the Flood Estimation Handbook (FEH) as required, resulting in the slight modification to the volume of the detention basin. Furthermore, the report establishes the onward connectivity of the restricted discharge from the application site as required.
- 1.2.3 The purpose of this report is to present the proposed Outline Drainage Strategy for the proposed development at the application site and support the Flood Risk Assessment (FRA) in providing justification to regulators and other stakeholders that the proposed development is feasible.
- 1.2.4 This Outline Drainage Strategy has been prepared in line with national policy requirements, and ultimately aims to support the future outline planning application for the application site. This report should be read in conjunction with the FRA (**Appendix D of the ES Addendum**), prepared by Royal HaskoningDHV.
- **1.2.5** The information outlined in this report has been developed in accordance with the National Planning Policy Framework (NPPF) along with advice and guidance from the Environment Agency, The Sustainable Drainage System (SuDS) Manual, and LLFA local policies.
- 1.2.6 During the development of this strategy, Royal HaskoningDHV have undertaken the following exercises:
 - Reviewed comments made by the LLFA and update the strategy where required;

2

- Review of the LIDAR Survey Information;
- Undertook existing surface Water Run-off Calculation;
- Defined allowable surface Water Discharge;
- Undertook a Quick Storage Estimates calculations to define the volume of surface water storage required;
- Outline drainage design following a high-level proposed site level strategy;
- Onward connectivity at the proposed point of restricted discharge;
- Preliminary assessment of compensatory storage taking account of surface water displacement;
- Full microdrainage network assessment of the proposals using (FEH) Rainfall Data; and
- Review of third party development adjacent to the development.
- 1.2.7 This Report references the priorities and preferences of National policies and in particular Devon County Councils' LLFA Guidance Documents (Devon County Council, 2022). It outlines the drainage strategy by exploring SuDS options which allow regulators and other stakeholders to assess whether the development is feasible.

1.3 Comments from the Lead Local Flooding Authority

1.3.1 The Lead Local Flooding Authority (LLFA) objected to the previously submitted Outline Drainage Strategy (previously **Appendix 5.E of the Onshore Project ES**) on the grounds of insufficient information provided. **Table 1.1** outlines the Applicant's responses and changes to the strategy following the LLFA comments.

Table 1.1	The Applicant's	responses	to LLFA	comments

LLFA Comment	The Applicant's Response
"It is noted that the construction management details have been considered as part of the application. It is recommended that the driving/tracking of plant and equipment to and from the trenching locations is also considered at this stage."	The access strategy for construction plant and equipment is described in Chapter 5: Project Description.
"It is noted that the applicant has proposed to use a pond to manage surface water before discharging into a ditch."	The Applicant confirms this. The pond is suitably sized for the critical storm event using FEH Rainfall data. The attenuation pond will function as a detention basin.
"The proposed system appears to account for flows from the substation only. It is recommended that the water quality is considered, based on the event that there is a need for vehicles to enter the site. Permeable paving and swales could be used to convey flows to the proposed pond, these	The use of permeable pavement and swales can be incorporated within the detailed design. As highlighted in Section 4 , the strategy aligns with the requirement of the Simple Index Approach (SIA). The Pollution Hazard Category of the site (Table 26.2 of CIRIA 753, 2015) is lesser than the

LLFA Comment	The Applicant's Response
features could provide opportunities for interception losses."	proposed Mitigation Index offered by the proposed SuDs component. The management train of the proposed Detention Basin will work in tandem with a proprietary treatment system. Detailed opportunities for SuDs features which offers water quality advantages together with the biodiversity and landscape amenity requirements will be explored at detailed design stage.
"It is noted that there are two sets of model outputs; one set model an attenuation tank and the other set model a pond. The applicant should confirm whether both outputs are relevant for this proposal."	The model output has be revised. The proposed detention basin is modelled as a pond (as presented in the Outline Drainage Drawing).
"50% climate change is required for the modelling of the surface water drainage system. A freeboard of 300mm is required."	The model has been revised and storm simulations extended to 1 in 100-year storm plus 50% climate change allowance. The model shows the inclusion of 300mm freeboard.
"It is also noted that the applicant has referred to an existing ditch adjacent to the Tarka Trail. Confirmation is required to be provided based on the route of this ditch and its eventual outfall."	Onward connectivity of the restricted discharge is via the existing network of adjacent ditches and culvert as outlined in Section 2.5 .
"The applicant is reminded that Land Drainage Consent will be required for temporary or permanent works within Ordinary Watercourses."	Land Drainage Consent will be made to the appropriate authority at detailed design stage prior to construction.

2 Site Description

2.1 Site Location

- 2.1.1 A Site Location Plan of the Onshore Substation is shown in **Annex 1**.
- 2.1.2 The Windfarm Site is located over 52km off the North Cornwall and North Devon coast (westnorth-west of Hartland Point). The Offshore Export Cable will connect the Offshore Substation Platform (if required) to shore. The Export Cable will come ashore at a Landfall at Saunton Sands on the North Devon Coast, and then be routed underground to the East Yelland Substation where it connects into the distribution network. Prior to connecting to the East Yelland Substation the cable will connect to a new White Cross Onshore Substation. A full description of the Onshore Project is given in **Chapter 5: Project Description** of the Onshore Project ES.

Figure 2.1 Existing Site Location Plan

- 2.1.3 The site of the proposed Onshore Substation includes land that was previously used as an oil and gas storage facility. The site is situated at the north-east part of Yelland, west of Barnstaple. The River Taw is located to the north of the site.
- 2.1.4 The total area of the proposed Onshore Substation site is 1.48ha, of which approximately 0.81ha is brownfield, however for the purposes of this Outline Drainage Strategy and in line with the requirement of the Devon County Council SUDs Design Guidance, the entire site will be considered as greenfield site.

Direction	Neighbouring Features Description
West	East Yelland Substation
East	Existing Industrial Depot and B3233. Proposed housing development.
North	Immediately north is an industrial depot and consented housing development. Further north is the River Taw.
South	Existing Solar Farm, far south is B3233-West Yelland

Table	21	Existina	Site	Surrou	Indinas
I abie	2.1	LAISUNY	Sile	Sunou	nuniyə

2.1.5 Table 2.2 presents the site information and a site location plan is shown in Annex 1.

Table 2.2 Site Location Information

Item	Brief Description
Site Address and Location	Land to west of Estuary Business Park. Closest postcode is EX31 3HB
Council Area	North Devon Council / Devon County Council
Approximate Grid Reference	SS 48217 32177
Total impermeable footprint (including Onshore Substation access road, landscaping and drainage)	Approximately 0.81ha

2.2 Topography

2.2.1 The site topography is generally very flat. The existing ground appears to slope in two directions from 5.3mAOD in the north-east direction to approximately 4.83mAOD in the south-west direction.

2.3 Geology

- **2.3.1** Information presented on the BGS online viewer (2024) indicates that the superficial deposits underlying the Site consist of Alluvium, sand and gravel. The geological formation present within the Onshore Development Area consists of Pilton Mudstone Formation, Blown Sand and Tidal Flat deposits. The Tidal Flat Deposit consist of Clay, silt and sand, a sedimentary superficial deposit formed in the Quaternary period.
- 2.3.2 Intrusive ground investigation evaluating sub soil strata was completed in September 2023 (refer to **Appendix T: Onshore Ground Investigation Interpretative Report**). The superficial deposits throughout the central site area are recorded in historic borehole consist of medium density to compact grey sand to 7.13m underlain by soft blue silty clay. The cohesive nature of the underlying strata suggests that surface water infiltration via permeability is limited.

2.4 Existing Watercourses and Onward Connectivity of Restricted Discharge

- 2.4.1 As highlighted in the Surface Water Connectivity Plan presented in the **Annex 5**, the existing drainage pattern in the vicinity of the proposed Onshore Substation consist of greenfield runoff; runoff percolating into the ground and the remainder flowing as overland, towards Tarka Trail ditch running east to west, and located north of the site.
- 2.4.2 A brick arch culvert (approx. 900mm) directs flow beneath the Tarka Trail. This returns to open channel for a short length before draining through a 900mm diameter culvert. The 900mm culvert discharges into an existing pond located to the northwest of the development. This pond discharges into the Taw estuary via another culvert.
- 2.4.3 The Surface Water Connectivity Plan (**Annex 5**) highlights the existing drainage route which conveys the restricted discharge offsite. As highlighted in the drawing, the discharge outfalls into a culvert that conveys flow of water under Tarka Trail. The maximum inflow from the proposed Onshore Substation is the restricted greenfield runoff of 3.8l/s (for the 1 in 100 year plus climate change). This inflow represents a reduction to the current surface water loading resulting from the existing site.

Figure 2.2 Culvert beneath Tarka Trail

Figure 2.3 Pond located Northwest of the development site

Figure 2.4 Outfall Culvert into Taw Estuary

Figure 2.5 Existing bedrock underlying the site (British Geological Society Maps)

3 Proposed Drainage Strategy

- 3.1.1 The proposal involves the installation of an onshore substation building, control building and associated access road and parking. The proposals consist of a total of 0.7ha of newly introduced impermeable area.
- **3.1.2** Management of surface water is an essential element for reducing flood risk and SuDS techniques are often designed to achieve this in a way that mimics the natural environment. This SuDS Strategy is based on the principles highlighted in the Devon County Council Sustainable Drainage System Guidance for Devon (2022) and has been formally consulted by North Devon Council as part of the TCPA planning application process. This strategy has been updated to take into account comments received by the LLFA during the formal consultation (as outlined in **Table 1.1**).
- **3.1.3** This SuDS Assessment has been developed in line with the SuDS hierarchical approach outlined in the Flood Risk and Coastal Change Section of the Planning Practice Guidance (paragraph 7 to 14) and as recommended CIRIA's SuDs Manual (2015) which recommends that surface water run-off should be discharged as high up the following hierarchy of drainage options as reasonably practicable:
 - Infiltration into ground;
 - To a surface water body;
 - To a surface water sewer, highway drain or other drainage system; or
 - To a combined sewer.
- **3.1.4** As discussed in **Section 2.4**, the intrusive ground investigation suggests made ground underlain by Tidal Flat Deposit which consist of Clay, silt and sand. This is further underlain by Pilton Mudstone Formation. These sub-strata suggest cohesive composition. It is assumed that surface water discharge methods using infiltration techniques are deemed unsuitable for this site.
- 3.1.5 As noted in **Paragraph 2.1.2**, part of the site was previously used as an oil and gas storage facilities, however the Devon County Council Sustainable Drainage Guidance requires that for developments on brownfield sites, peak flow control must still match the greenfield run-off rate, especially where there is increase in impermeable surface introduced as a result of a proposed development.
- 3.1.6 The existing greenfield run-off estimate for the site using the HR Wallingford procedure is presented in **Annex 3**. The drainage design strategy is sought that the post development discharge rate is no more that the equivalent greenfield run-off rate up to the 1 in 100-year storm event including a 50% climate change allowance.
- 3.1.7 This Drainage Strategy is informed by the Flood Risk Assessment (**Appendix D of the ES Addendum**), which suggested an Upper End allowance for the future Extreme Water Levels of 6.43mAOD. The FFL of the substation will therefore be at least 300mm above this level (equating to 6.73mAOD). The proposed ground level is 1.4m above the existing ground at the development site.

3.2 Proposed Surface Water Strategy

- **3.2.1** Overall impermeable area contributing surface water run-off is approximately 0.7ha. It is proposed that surface water drainage from all impermeable surfaces are routed via a proprietary treatment system, such as hydro-downstream defenders or similarly equivalent, into an attenuation pond located to the south of the proposed development.
- **3.2.2** Peak surface water run-off is then restricted to the maximum greenfield run-off rate of 3.8l/s for the 1 in 100-year rainfall event. This is to be restricted, via a proposed hydrobrake flow control device at the downstream end of the pond. The minimum base level of the pond is approximately 3.64mAOD; maximum ponded depth within the pond is approximately 4.593mAOD.
- **3.2.3** It is proposed to channel the restricted surface-water flow via a 150mm pipe laid at a minimum gradient of 1 in 150, with a pipe roughness *Ks* specified at 0.6. The proposed geometry and arrangement of the drainage pipe network minimises conflict between this proposed pipe network and the proposed/existing underground cables in the vicinity of the works.
- 3.2.4 The proposed drainage strategy is indicated in drawing PC2978-RHD-ZZ-XX-DR-D-0500 (Annex 2).
- **3.2.5** The proposed attenuation pond contributes approximately 514m³ of storage. Maximum depth of the pond is approximately 1.2m with a minimum side slope of 1 in 3. The geometry of the pond ensures a free board of approximately 0.30m is secured in the 1 in 100 year plus 50% climate change event. The proposed pond (Detention Basin) will be lined with impermeable geomembrane, the technical specification of the geomembrane/geotextiles will be determined at detailed design.
- 3.2.6 **Annex 3** presents the Full Microdrainage Network calculations modelling the storage and conveyance capacity of the proposed drainage system. A summary of the SuDS provision is provided in **Table 3.1**.

SUDs Storage Structure	Ds Storage Surface Water Volume of Disposal Storage Mechanism (m³)		Discharge Flowrate (I/s)	Water Level at the 1 in 100 year storm event plus 50% climate change	Freeboard	
Detention Basin (Attenuation Pond)	Attenuation	514	3.8I/s	4.593mAOD	300mm	

Table 3.1 Summary of SuDS Provision

- 3.2.7 Furthermore, as highlighted in the drawing PC3506-RHD-ZZ-XX-DR-D-0500 (**Annex 2**), allowances are made for a surface water compensatory storage volume of 3,200 cubic.m in the 1 in 100-year storm event. This is as a result of surface water displacement owing from proposed changes in the ground level.
- 3.2.8 This estimate has been preliminary computed via surface water flood depth layers and must be reiterated as a very conservative value since the proposed development benefits from its proposed surface water drainage strategy.

3.2.9 During exceedance events, beyond the 100 year critical storm surface water runoff will overflow from the aforementioned systems. Overland flow will follow the topography of the site and will route towards convenient holding points (as marked in drawing PC2978-RHD-ZZ-XX-DR-D-0500) where any freeboard beyond the capacity of the attenuation features flows would be directed towards the compensation basins at the lower edge of site, where any available capacity can be utilised.

4 Water Quality

4.1.1 Proposed run-off quality control for the site will include proprietary treatment. A schedule of the size of the oil interceptors is included in **Annex 4**. The proposed oil interceptors ensures that that:

TOTAL SUDS MITIGATION INDEX
(FOR EACH CONTAMINANT)POLLUTION HAZARD INDEX
(FOR EACH CONTAMINANT)

4.1.2 **Annex 4** includes details of the results of the SIA tools (CIRIA guidance C753-SuDS Manual, 2015) and demonstrates that the proposals are sufficient to meet the required standards for water quality.

5 Review of Third Party Development

- 5.1.1 To the east of the proposed Onshore Substation is a proposed mixed use development consisting of predominantly residential and commercial development. A planning application (Application Number: 77453) was submitted in August 2023 and subsequently withdrawn in November 2023. A review of the proposals has been undertaken as part of the update to this Outline Drainage Strategy.
- 5.1.2 A Drainage Strategy was submitted as part of the application. It was proposed that surface water runoff generated by the proposed development would be intercepted at ground level and be routed through a new storm network towards a series of open SuDS attenuation with attenuated flows conveyed towards the existing Tarka Trail ditch.
- 5.1.3 According to the Drainage Strategy submitted, the proposed long-term storage for the proposed site, the discharge rate and volume were calculated in line with CIRIA C753 guidance (2015) to achieve a 2 l/s/ha peak based on a 1ha unit of impermeable area. The net development area is 1.67ha and was assumed to be 60% impermeable (1.0ha) including allowance for 10% urban creep.
- 5.1.4 This implies that a future development, if taken forward, in the vicinity of the proposed site will have a formal surface water drainage system, which will influence and reduce the resultant applicable surface water catchment from the existing greenfield run off discharge rate. The resultant inflow contributed by the proposed third-party development and this proposed development is comparably less than the existing inflow from the same catchment in the 1 in 100 year storm event plus climate change.

6 Conclusions

6.1.1 The Devon County Council Sustainable Drainage Design Guides (2022) requires proposed peak outflow from existing brownfield sites to be the equivalent greenfield run-off rates. The existing

ground appear to slope in two directions from 5.3mAOD in the north-east direction to approximately 4.83mAOD in the south-west direction.

- 6.1.2 Intrusive ground investigation evaluating sub soil strata was completed September 2023 (refer to **Appendix T: Onshore Ground Investigation Interpretative Report**). The superficial deposits throughout the central site area are recorded in historic borehole consist of medium density to compact grey sand to 7.13m underlain by soft blue silty clay. The cohesive nature of the underlying strata suggests that surface water infiltration via permeability is limited
- **6.1.3** Extensive topographical survey will be undertaken during detailed design to verify the presence of and direction of water flow and the existing invert levels of the land drains in the vicinity of the site.
- **6.1.4** The surface water drainage from approximately 0.81ha of impermeable surfaces will be routed via a proprietary treatment system, into an attenuation pond providing a storage volume of approximately 514m³.
- **6.1.5** Peak surface water run-off is restricted via a hydro-brake flow control device to the maximum greenfield run-off rate of 3.87l/s for the 1 in 100-year rainfall event including climate change allowances. This is to be restricted to ensure surface water outflow is directed into existing land drains located northwest of the development.
- 6.1.6 There will be no increase in flood risk from the site to the surrounding area due to the restricted run-off rates and inclusion of SuDS. This SuDS Assessment/Drainage Strategy demonstrates to regulators and other stakeholders that the proposed development is feasible.

7 References

British Geological Society (2024) BGS Geology Viewer. https://www.bgs.ac.uk/map-viewers/bgs-geology-viewer. Accessed: 03/05/2024.

CIRIA (2015). The SuDS Manual C753

Devon County Council (2022). Sustainable Drainage Systems (SuDS) https://www.devon.gov.uk/floodriskmanagement/planning-and-development/sustainable-drainage. Accessed: 03/05/2024.

Annex 1: Site Location Plan

2 May 2024 Outline Drainage Strategy

Annex 2: Outline Surface Water Drainage Strategy

	7
	NOTES
	1. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS
	 ALL LEVELS ARE IN METRES ABOVE CHART DATUM UNLESS NOTED OTHERWISE.
	 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ENGINEERS DRAWINGS
Undergro	4. WORKS TO BE UNDERTAKEN IN ACCORDANCE
	WITH THE SPECIFICATION FOR HIGHWAYS WORKS (SHW) UNLESS NOTED OTHERWISE.
× [™]	5. ALL DIMENSIONS AND LEVELS ARE TO BE VERIFIED AND CONFIRMED ON SITE PRIOR TO WORK COMMENCING.
	6. ANY DISCREPENCIES TO OR OMISSIONS ARE TO BE REPORTED TO THE PROJECT MANAGER FOR FURTHER INSTRUCTIONS BEFORE COMMENCEMENT OF WORKS.
5.1.6 + 3. 4.0° + 39.0° + 4.5	
	LEGEND
	PROPOSED SURFACE WATER SEWER AND MANHOLE
	PROPOSED GULLY
SFEET	EXISTING OVERHEAD ELECTRICAL CABLE
	EXISTING UNDERGROUND ELECTRICAL CABLE
5. ⁵ , 5.5 ⁶	PROPOSED LANDSCAPED AREA
	TEMPORARY CONSTRUCTION COMPOUND
5.421 1 3 .	PROPOSED DETENTION BASIN
	PROPOSED GRADED EMBANKMENT
PELICE FAVES	PROPOSED FILTER DRAIN AT THE TOE OF EMBANKMENT
a_{0} + a_{140}	RWP PROPOSED RAINWATER OUTLET FROM ROOF
0.140 DE::: 	EXTENT OF A CONSERVATIVE SURFACE WATER
T _{F1} Poor	
	PLOT BOUNDART
eo;;	
Build	
renceime	
200 ^{-0+.}	P06 27-03-24 INCLUDED COMPENSATORY STORAGE IO OA DJ
	P05 08-09-23 GULLY POSITIONS AND MANHOLE REFRENCES IO OA DJ
ditch .	P04 20-07-23 REVISED TO INCLUDE UPDATED SITE PLAN IO OA DJ
	P01 16-05-23 FIRST ISSUE IO OA DJ
	REV DATE DESCRIPTION BY CHK APP
	LIMITED
	PROJECT
	WHITE CROSS WINDFARM
	TITLE
	OUTLINE SURFACE WATER
	DRAINAGE STRATEGY
	Portland Street,
	Manchester One, 9th Floor Manchester, M1 3LF Tel +44(0)161 2361018
	Email info.manchester@uk.rhdhv.com Website www.royalhaskoning.com
	HaskoningDHV
	Enhancing Society Together
5 0 40 00 00	IDRAWN CHECKED APPROVED
SCALE IN METRES	DATE SCALE AT A1 PROJECT NUMBER
	ΔΡΡΙΙ 2024 1.500 00000
1:500	APRIL 2024 1:500 PC2978 DRAWING NO. REVISION

Annex 3: Hydraulics Calculations

Nighted House Outline Drainage Strategy White Cross Offshore Windfarm Sirrey, PE 3 BOW Full Drainage Network Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.MDX Designed by 10 Designed by 10 Site Surfacewater Network.NDX TEB Rainfall Model Designed by 10 Return Period (years) Dot Dot Dot Surfacewater Network.NDX Tebe Rainfall Model Dot Dot Return Periol Network Network Network Network Network Network Ne	HaskoningDHV UK Limited						Page 1	
Barton, Peterborough Surrey, PE3 80W White Cross Offshore Windfarm Full Drainage Network Designed by 10 Checked by 8A Important Surrey PE3 80W Network 2020.1.3 Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Network 2020.1.3 Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Network 2020.1.3 Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Network 2020.1.3 Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Network 2020.1.3 Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Surrey PE3 80W Important Surrey PE3 80W Important Surrey PE3 80W Imporead Surrey PE3 80W Surrey PE3 80	Rightwell House	0	utline Draina	ge Strate	gy			
Surrey, PE3 8DW Full Drainage Network Designed by 10 Date 31/03/2024 20:36 Designed by 10 Designed by 10 Checked by BA Designed by 10 Designed by 10 Immovize Network 2020.1.3 Designed by 10 Design Colspan="2">Design Design Colspan="2">Design 2013 Design Colspan="2">Design 2013 Site Location GB 248217 132177 SS 48217 32177 Nation of Concentration (ans) Note Concentration (ans) Nation Concentration (ans) Network Change (b) <	Bretton, Peterborough	w	/hite Cross O	ffshore W	/indfarm			
Date 31/03/2024 20:36 Designed by 10 Designed by 10 Checked by BA Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Designed by 10 Design Criteria for Storm Design and for Storm Min Vel for Auto Design only (m/s) Design Table for Storm Design Table for Storm<	Surrey, PE3 8DW	Fu	ull Drainage N	letwork			Micro	
Ele Surfacewater Network.MDX Checked by BA Concernent nnoyze Network 2020.1.3 DECOMPT NETWORK DECOMPT DECOMPT NETWORK DECOMPT DE	Date 31/03/2024 20:36	D	esigned by IC)				
mnovyze Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm FIP Sizes STANDARD Manhole Sizes STANDARD FEW Rainfall Model Return Period (years) 100 FEW Rainfall Model Return Period (years) Naximum Rainfall (mm/hr) Site Location GB 248217 132177 SS 49217 32177 Data Type Maximum Rainfall (mm/hr) Naximum Rainfall (mm/hr) Naximum Rainfall (mm/hr) Add Plaw / Climate Change (8) Out Maximum Rainfall (mm/hr) Add Plaw / Climate Change (8) Out Maximum Rainfall (mm/hr) Add Plaw / Climate Change (8) Out Maximum Rainfall (mm/hr) Add Plaw / Climate Change (8) Out Maximum Rainfall (mm/hr) Add Plaw / Climate Change (8) Out Maximum Rainfall Mm/hr) Maximum Rainfall Mm/hr) Design Colspan <td col<="" th=""><th>File Surfacewater Network.MDX</th><th>C</th><th>hecked by BA</th><th>L .</th><th></th><th></th><th>Dialitacj</th></td>	<th>File Surfacewater Network.MDX</th> <th>C</th> <th>hecked by BA</th> <th>L .</th> <th></th> <th></th> <th>Dialitacj</th>	File Surfacewater Network.MDX	C	hecked by BA	L .			Dialitacj
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm File Sizes STANDARD Manhole Sizes STANDARD Maximum Rainfall (wears) OU Maximum Rainfall (mm/hr) Size Location GE 249217 132177 SS 48217 92177 Maximum Rainfall (mm/hr) Size Cocation GE 249217 132177 SS 48217 92177 Maximum Rainfall (mm/hr) Size Cocation GE 249217 132177 SS 48217 92177 Maximum Rainfall (mm/hr) Maximum Ra	Innovyze	N	etwork 2020	1.3				
DEGRM SEWERE DESIGN by the Modified Rational Method Design of the state standard Design of the state standard Figh Rainfall Model Figh Rainfall Model								
Design Chicke of Status Fig. Status Fig. Status Fig. Status Fig. Status Status <td>STORM SEWER</td> <td>DESIGN</td> <td>l by the Mod</td> <td>ified Ratio</td> <td>onal Metho</td> <td><u>d</u></td> <td></td>	STORM SEWER	DESIGN	l by the Mod	ified Ratio	onal Metho	<u>d</u>		
Pipe Sizes STANDARD Manhole Sizes STANDARD FER Rainfall Version 000 Site Incation GR 248217 132177 SS 48217 33177 Data Tapp Point Maximum Rainfall (mm/hr) 50 Baximum Rainfall (mm/hr) 500 Baximum Rainfall (mm/hr) 500 Bin Peoign Depth For Optimisation (m) 1.500 Min Slope for Auto Design endy (m/s) 1.000 Min Slope for Optimisation (li:X) 500 Catal Area Contributing (ha) = 0.614 Total Pipe Volume (m') = 47.956 Pipe (m) (mins) Flow (l/s) (m) SECT (mn) 1.000 (li:X) (ha) (mins) Flow (l/s) (m) SECT (mn) Design 1.000 71.553 0.239 300.0 0.023 5.0		Design	Criteria for S	<u>Storm</u>				
FEH Rainfall Model Return Period (years) 100 FBE Rainfall Version 2013 Site Location GB 248217 132177 SS 48217 32177 2013 Data Type Point Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 50 POUL Sewage (J/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PUM (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (n) 1.200 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) Total Area Contributing (ha) = 0.614 Total Pipe Volume (m²) = 47.956 Length Fall Slope I.Area T.E. Base k HD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (J/s) (m) SECT (mm) 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.000 o 300 Pipe/Conduit () Chework Results Table PN Rain T.C. US/IL Z LArea E Base Foul Add Flow Vel Cap Flow (m/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.90 63.8 3.1 <td>Pipe Sizes</td> <td>STAND</td> <td>ARD Manhole</td> <td>e Sizes</td> <td>STANDARD</td> <td></td> <td></td>	Pipe Sizes	STAND	ARD Manhole	e Sizes	STANDARD			
Return Period (years) 100 Site Location GB 248217 132177 SS 48217 32177 Data Type Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Seage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 Poul Seage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 Add Flow / Climate Change (8) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.200 Min Design Depth for Optimisation (m) 1.00 Min Slope for Optimisation (11X) 500 Designed with Level Soffits 500 Designed with Level Soffits 612 0.070 Total Area (mins) (ha) (mins) (ha) (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m³) = 47.956 Network Design Table for Storm (m) (m) (1.1X) (ha) (mins) Flow (1/s) (m) SECT (m) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.060 o 300 Pipe/Conduit Image: state s		FEH	Rainfall Mo	odel				
Site Location GB 248217 132177 SS 482217 32177 Data Type Maximum Rainfall (mm/hr) Source Foul Swage (1/s/ha) Olumetric Runoff Coeff. Minimum Backdrop Reight (m) Add Flow / Climate Change (%) Olumetric Runoff Coeff. Minimum Backdrop Reight (m) Intervention (link) Min Pelson Peth for Optimisation (n) Min Slope for Optimisation (link) Min Slope for Optimisation (link) Ol-4 0.078 A = 8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m ³) = 47.956 EN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (lix) (ha) (mins) Flow (l/s) (mm) SECT (mm) Loud II (mins) (m) (lik) (ha) (mins) Flow (l/s) (mm) SECT (mm) Loud II (mins) (m) (mins) (mins) Flow (l/s	Return P	eriod	(years)				100	
Data Type Point Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.500 Min Slope for Optimisation (m) 1.500 Min Slope for Optimisation (11:X) 500 Designed with Level Soffits 500 Time Area (mins) (ha) (mins) (ha) (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m') = 47.956 Network Design Table for Storm « - Indicates pipe capacity < flow	ген кат	niall Site I	version GB	248217	132177 55	48217	2013	
Maximum Time of Concentration (mins) 50 Maximum Time of Concentration (mins) 30 Four Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIW (%) 100 Add Flow / Climate Change (%) 0 Maximum Backdrop Height (m) 1.500 Minimum Backdrop Height (m) 1.200 Min Design Depth for Optimisation (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) Maximum (na) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m') = 47.956 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m') = 47.956 Min (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.00 0 o 300 Pipe/Conduit Image: Piow (m/h) (mins) (m) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.0		Da	ita Type	210217	1021// 00	1021,	Point	
Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 FIMF (%) 100 Add Flow / Climate Change (%) 0 Maximum Backdrop Height (m) 1.500 Minimum Backdrop Height (m) 1.200 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits 500 Time Area (mins) (ha) (nins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m²) = 47.956 Network Design Table for Storm (m) (m) (1:X) (ha) (mins) Flow (1/s) (m) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 300 Pipe/Conduit () Metwork Results Table Main T.C. US/II E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) (1/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.90 63.8 3.1	Maximum Rai	nfall	(mm/hr)				50	
Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) Time Area Diagram for Storm Time Area (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m³) = 47.956 Network Design Table for Storm (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.00 0 0 300 Pipe/Conduit Image: Climate and the pipe flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.00 0.0 0.0 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.0	Maximum Time of Concent	ratior	n (mins)				30	
FINE (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Velope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Time Area (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Area Contributing (ha) = 0.614 Total Area T.E. Base k HYD DIA Section Type Auto (m) (1:X) (ha) (mins) Flow (1/s) (m) SECT (m) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.00 0.600 o 300 Pipe/Conduit Metwork Results Table N Rain T.C. US/IL F I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) Length T.C. US/IL F I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)	Foul Se	wage ((l/s/ha)				0.000	
Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area [Time Area (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Area Time Area (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Colspan= Colspan= Colspan= Colspan= Colspan="2">Colspan= Colspan= Colspan	Volumetric	Runofi	COEII.				100	
Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) (mins) (ha) (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Area Contributing (ha) = 0.614 Total Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design Inducates pipe capacity < flow	Add Flow / Clima	te Cha	inge (%)				0	
Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Time Area (mins) (ha) 0 -4 <td>Minimum Backdr</td> <td>op Hei</td> <td>.ght (m)</td> <td></td> <td></td> <td></td> <td>0.200</td>	Minimum Backdr	op Hei	.ght (m)				0.200	
Min Design Depth for Optimisation (m) Min Vel for Auto Design only (m/s) Min Slope for Optimisation (1:X) Designed with Level Soffits Time Area Diagram for Storm Time Area (mins) (ha) 0-4 0.078 Time Area Time Area (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m³) = 47.956 Network Design Table for Storm « - Indicates pipe capacity < flow FN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.00 0 o 300 Pipe/Conduit € Network Results Table FN Rain T.C. US/IL 2 I.Area 2 Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 6.32 4,500 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Maximum Backdr	ор Неі	.ght (m)				1.500	
Min Vel for Auto Design only (m/s) 500 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m ³) = 47.956 Network Design Table for Storm « - Indicates pipe capacity < flow FN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 o 300 Pipe/Conduit € Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.90 63.8 3.1	Min Design Depth for Opt	imisat	ion (m)				1.200	
Exercise for optimisation (11.2) Designed with Level Soffits Time Area Time Area (mins) (ha) (mins) (ha) (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m³) = 47.956 Network Design Table for Storm (m) (m) (1:x) (ha) (mins) Flow (1/s) (mm) SECT (mm) DIA Section Type Auto (m) (m) (1:x) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 o 300 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.90 63.8 3.1	Min Vel for Auto Desi.	gn onl	.y (m/s)				1.00	
Designed with Level Soffits Time Area (mins) (na) Time (nains) Area (nains) Time (nains) Area (mins) Time (nains)	Min Stope for Optim	ISALIC)11 (1:A)				500	
Time Area (mins) (ha) Time Area (mins) (ha) Time Area (mins) (ha) 0-4 0.078 4-8 0.466 8-12 0.070 Otal Area Contributing (ha) = 0.614 Total Pipe Volume (m³) = 47.956 Network Design Table for Storm « - Indicates pipe capacity < flow	Des	igned	with Level	Soffits	3			
Time Area (mins) Area (ha) Section Area (mins) Area (mins) Time Area (mins) Area (ha) Section Area (mins) Area (mins) Area (mins) Time Area (mins) Area (ha) Area (mins) Ar	Ti	me Are	a Diagram fo	or Storm				
0-4 0.078 4-8 0.466 8-12 0.070 Total Area Contributing (ha) = 0.614 Total Pipe Volume (m³) = 47.956 <u>Network Design Table for Storm</u> « - Indicates pipe capacity < flow <u>PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto</u> (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 o 300 Pipe/Conduit <u>Network Results Table</u> <u>Network Results Table</u> <u>PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow</u> (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.90 63.8 3.1	Time Ar (mins) (l	rea ha) (1	Time Area mins) (ha)	Time (mins)	Area (ha)			
Total Area Contributing (ha) = 0.614 Total Pipe Volume (m³) = 47.956 <u>Network Design Table for Storm</u> « - Indicates pipe capacity < flow <u>PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 o 300 Pipe/Conduit <u>Network Results Table</u> <u>PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow</u> (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.0 0.0 0.90 63.8 3.1</u>	0-4 0.	078	4-8 0.46	5 8-12	0.070			
Total Pipe Volume (m³) = 47.956 Network Design Table for Storm « - Indicates pipe capacity < flow	Total An	rea Co	ntributing	(ha) =	0.614			
Network Design Table for Storm « - Indicates pipe capacity < flow	Total	Pipe	Volume (m³) = 47.9	956			
w - Indicates pipe capacity < flow	Nei	twork [Design Table	for Storm				
FN Length fall Slope I.Area (n) T.E. (n) Base (n) k (nm) HYD DIA Section Type Auto Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 0 300 Pipe/Conduit	« - Inc	dicate	s pipe capa	acity <	flow			
FN Length Fall Slope LAFEA T.E. Base K HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 o 300 Pipe/Conduit Image: Conduit Image: Conduit <td></td> <td></td> <td>D=</td> <td>1-</td> <td>UVD 575</td> <td>0</td> <td></td>			D =	1-	UVD 575	0		
1.000 71.553 0.239 300.0 0.023 5.00 0.0 0.600 o 300 Pipe/Conduit	(m) (m) (1:X) (ha)	i.또. (mins)	Base Flow (l/s	к) (mm)	SECT (mm))	on type Auto Design	
Network Results Table PN Rain (mm/hr) T.C. US/IL E I.Area (ha) E Base Foul (l/s) Foul (l/s) Add Flow (l/s) Vel (l/s) Cap (l/s) Flow (l/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.90 63.8 3.1	1.000 71.553 0.239 300.0 0.023	5.00	0.	0 0.600	o 30	0 Pipe/	Conduit 🔒	
PN Rain T.C. US/IL Σ I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (m/s) (l/s) (l/s) 1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.90 63.8 3.1		<u>Netw</u>	ork Results T	<u>able</u>				
1.000 50.00 6.32 4.500 0.023 0.0 0.0 0.0 0.90 63.8 3.1	PN Rain T.C. US/ILΣ (mm/hr) (mins) (m)	I.Area (ha)	Σ Base Flow (l/s	Foul) (l/s)	Add Flow (l/s)	Vel (m/s)	Cap Flow (l/s) (l/s)	
	1.000 50.00 6.32 4.500	0.023	0.	0 0.0	0.0	0.90	63.8 3.1	
		<u> </u>						

Haskonin	gDHV Uk	(Limite	d								Pag	e 2
Rightwel	l House				0	utline [Drainag	e Strate	gy			
Bretton,	Peterbor	ough			w	hite Cr	oss Off	shore W	/indfar	m		
Surrey, P	E3 8DW				Fu	ull Drain	nage Ne	twork			M	
Date 31/	03/2024	20:36			D	esigned	l by IO					
File Surfa	cewater	Netwo	k.MDX		Cł	necked	by BA					anaye
Innovyze					N	etwork	2020.1	.3				
				<u>Ne</u>	etwork D	Design 1	able fo	r Storm				
PN	Length	Fall	Slope	T.Area	Τ.Ε.	Ba	ase	k	HYD	DTA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1 001	1/ 250	0 0 1 0	200 0	0 022	0 00		0 0	0 600	~	200	Dino (Conduit	
1.001	13.917	0.048	300.0	0.023	0.00		0.0	0.600	0	300	Pipe/Conduit	· 0` : #
											<u>r</u> ,	· •
2.000	63.816	0.213	300.0	0.024	5.00		0.0	0.600	0	300	Pipe/Conduit	: 👌
1 003	45 487	0 152	300 0	0 024	0 00		0 0	0 600	0	300	Pipe/Conduit	- A
1.003	36.675	0.122	300.0	0.071	0.00		0.0	0.600	0	300	Pipe/Conduit	· U
											-	
3.000	19.814	0.066	300.0	0.071	5.00		0.0	0.600	0	150	Pipe/Conduit	្ 🗗
1 005	34 169	0 115	298 2	0 071	0 00		0 0	0 600	0	300	Pipe/Conduit	- A
1.000	51.105	0.110	290.2	0.071	0.00		0.0	0.000	0	000	ripe, conduit	· U
4.000	25.423	0.085	300.0	0.071	5.00		0.0	0.600	0	150	Pipe/Conduit	: 💣
4.001	40.066	0.135	297.6	0.071	0.00		0.0	0.600	0	300	Pipe/Conduit	់ 💣
1.006	16.825	0.055	303.8	0.071	0.00		0.0	0.600	0	300	Pipe/Conduit	
									÷			· •
5.000	43.815	0.219	200.0	0.071	5.00		0.0	0.600	0	300	Pipe/Conduit	: 👌
5.001	19.668	0.066	300.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ំ 可
1.007	21.995	0.073	300.0	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	: 🔺
1.008	9.461	0.010	946.1	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	: 🧴

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.001 1.002	50.00 50.00	6.59 6.84	4.261 4.214	0.046 0.069	0.0	0.0	0.0	0.90 0.90	63.8 63.8	6.2 9.3
2.000	50.00	6.18	5.400	0.024	0.0	0.0	0.0	0.90	63.8	3.2
1.003 1.004	50.00 50.00	7.68 8.36	<mark>4.167</mark> 4.015	0.117 0.188	0.0	0.0	0.0	0.90 0.90	63.8 63.8	15.8 25.5
3.000	50.00	5.57	5.000	0.071	0.0	0.0	0.0	0.58	10.2	9.6
1.005	50.00	8.99	3.893	0.330	0.0	0.0	0.0	0.91	64.0	44.7
4.000 4.001	50.00 50.00	5.74 6.47	5.000 4.765	0.071 0.142	0.0	0.0	0.0	0.58 0.91	10.2 64.1	9.6 19.2
1.006	50.00	9.30	3.778	0.543	0.0	0.0	0.0	0.90	63.4«	73.5
5.000 5.001	50.00 50.00	5.66 6.02	5.300 5.081	0.071 0.071	0.0	0.0	0.0	1.11 0.90	78.3 63.8	9.6 9.6
1.007 1.008	50.00 50.00	9.65 9.93	3.723 3.650	0.614 0.614	0.0	0.0	0.0	1.04 0.58	115.0 64.2«	83.1 83.1
				©198	2-2020 Innovy	ze				

HaskoningDHV UK Limited		Page 3
Rightwell House	Outline Drainage Strategy	
Bretton, Peterborough	White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Mirro
Date 31/03/2024 20:36	Designed by IO	Dcainago
File Surfacewater Network.MDX	Checked by BA	Drainacje
Innovyze	Network 2020.1.3	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.009 1.010	41.476	0.290	143.0 145.1	0.000	0.00		0.0	0.600	0	375 375 275	Pipe/Conduit Pipe/Conduit	0 0

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(1/s)
1.009	50.00	10.38	3.640	0.614	0.0	0.0	0.0	1.51	167.1	83.1
1.010	50.00	11.12	3.350	0.614	0.0	0.0	0.0	1.50	165.9	83.1
1.011	50.00	11.47	2.890	0.614	0.0	0.0	0.0	1.51	167.3	83.1

HaskoningDHV UK Limited		Page 4
Rightwell House	Outline Drainage Strategy	
Bretton, Peterborough	White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Mirro
Date 31/03/2024 20:36	Designed by IO	Dcainago
File Surfacewater Network.MDX	Checked by BA	Diginarie
Innovyze	Network 2020.1.3	

				Manhole S	Schedul	<u>es for Storm</u>					
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
01	5.800	1.300	Open Manhole	1200	1.000	4.500	300				
02	6.000	1.739	Open Manhole	1200	1.001	4.261	300	1.000	4.261	300	
03	6.300	2.086	Open Manhole	1200	1.002	4.214	300	1.001	4.214	300	
16	6.400	1.000	Open Manhole	1200	2.000	5.400	300				
04	6.300	2.133	Open Manhole	1200	1.003	4.167	300	1.002	4.167	300	
								2.000	5.187	300	1020
05	6.300	2.285	Open Manhole	1200	1.004	4.015	300	1.003	4.015	300	
Н07	6.300	1.300	Open Manhole	1200	3.000	5.000	150				
06	6.300	2.407	Open Manhole	1200	1.005	3.893	300	1.004	3.893	300	
								3.000	4.934	150	891
07	6.300	1.300	Open Manhole	1200	4.000	5.000	150				
08	6.300	1.535	Open Manhole	1200	4.001	4.765	300	4.000	4.915	150	
09	6.200	2.422	Open Manhole	1200	1.006	3.778	300	1.005	3.778	300	
								4.001	4.631	300	853
10	6.300	1.000	Open Manhole	1200	5.000	5.300	300				
11	6.200	1.119	Open Manhole	1200	5.001	5.081	300	5.000	5.081	300	
12	6.200	2.477	Open Manhole	1350	1.007	3.723	375	1.006	3.723	300	
								5.001	5.015	300	1217
13	4.850	1.200	Open Manhole	1350	1.008	3.650	375	1.007	3.650	375	
14	4.840	1.200	Open Manhole	1350	1.009	3.640	375	1.008	3.640	375	
15	4.800	1.450	Open Manhole	1350	1.010	3.350	375	1.009	3.350	375	
16	4.800	1.910	Open Manhole	1350	1.011	2.890	375	1.010	2.890	375	
	4.800	2.128	Open Manhole	0		OUTFALL		1.011	2.672	375	

MH Manhole Manhole Intersection Intersection Manhole Layout Name Easting Northing Easting Northing Access (North) (m) (m) (m) (m) 01 248285.193 132253.697 248285.193 132253.697 Required 02 248226.561 132212.682 132212.682 Required 248226.561 03 248217.121 132201.862 248217.121 132201.862 Required 16 248243.018 132141.916 248243.018 132141.916 Required

HaskoningDHV UK Limited		Page 5
Rightwell House Bretton, Peterborough	Outline Drainage Strategy White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Micro
Date 31/03/2024 20:36	Designed by IO	Drainage
File Surfacewater Network.MDX	Checked by BA	Brainiage
Innovyze	Network 2020.1.3	

Manhole Schedules for Storm

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
04	248205.806	132193.759	248205.806	132193.759	Required	×
05	248168.825	132167.275	248168.825	132167.275	Required	6
Н07	248122.899	132134.384	248122.899	132134.384	Required	-
06	248139.034	132145.885	248139.034	132145.885	Required	
07	248212.577	132156.251	248212.577	132156.251	Required	
08	248191.908	132141.449	248191.908	132141.449	Required	
09	248159.204	132118.303	248159.204	132118.303	Required	X
10	248127.168	132128.511	248127.168	132128.511	Required	
11	248152.927	132093.068	248152.927	132093.068	Required	Ŷ
12	248168.895	132104.550	248168.895	132104.550	Required	$\mathbf{\hat{k}}$
13	248181.926	132086.830	248181.926	132086.830	Required	$\mathbf{\hat{\mathbf{y}}}$
14	248174.893	132080.503	248174.893	132080.503	Required	-
15	248133.462	132078.571	248133.462	132078.571	Required	`
16	248091.356	132130.379	248091.356	132130.379	Required	
	248094.426	132161.269			No Entry	•

Nightwell House Outline Drainage Strategy White Cross Offshore Windfarm Surrey, PE3 8DW Full Drainage Network Designed by 10 Sate 31/03/2024 20:36 Designed by 10 Checked by BA nnovyze Network 2020.1.3 Dutfall Outfall C. Level I. Level Min D.L W Fipe Number Name (m) (m) I. Level (mm) (mm) (m) I. Level (mm) (mm) (m) 1.011 4.800 2.672 0.000 Network 2020.1 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADE Factor + 10m ² /ha Storage 2.000 Hot Start Level (mm) 0 Intel Coefficient 0.800 Hot Start Level (mm) 0 Fun Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 100 Full Summer Storms 100 Stet Location GB 248217 132177 S5 48217 32177 2013							Fage 0					
Bartton, Peterborough Surrey, PE3 BDW White Cross Offshore Windfarm Full Drainage Network Date 31/03/2024 20:36 Designed by 10 Checked by BA Iele Surfacewater Network.MDX Decked by BA nnovyze Network 2020.1.3 Dutfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) (m) (m) (m) 1.011 4.800 2.672 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m²/ha Storage 2.000 Hot Start Level (min) 0 Flow per Person per Day (1/per/day) 0.000 Run Time (mins) 0 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 1 Number of Storage Structures 1 1 Number of Offline Controls 1 Number of Real Time Controls 0 0 100 Fet Kainfall Model FEH Return Period (years) 100 100 FEH Rainfall Version 2013 Site Location GB 248217 132177 SS 48217 32177 Data Type 100 FEH Rainfall Version 2013 Site Location GB 248217 132177 SS 48217 32177 Data Type Point Summer Storms No CY (Summer) 0.750 CY (Winter Storms No 20	Rightwell House	Outline Dr	ainage Stra	itegy								
Surrey, PE3 8DW Full Drainage Network Microaction Date 31/03/2024 20:36 Designed by IO Checked by BA Designed by IO Checked by BA nnovyze Network 2020.1.3 Dutfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.011 4.800 2.672 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m²/ha Storage 2.000 Hot Start (mins) Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (0.150) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 2013 Site Location GB 248217 132177 SS 48217 32177 Data Type Point Summer Storms No CV (Summer) 0.750 CV (Summer) 0.750 CV (Winter) 0.840 Storm Duration (mins) 30	Bretton, Peterborough	White Cro	ss Offshore	Windfar	m							
Date 31/03/2024 20:36 Designed by IO Checked by BA Designed by IO Checked by BA nnovyze Network 2020.1.3 If the Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D, L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.011 4.800 2.672 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m²/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 1 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 248217 132177 SS 48217 32177 Data Type Point Summer Storms Yes Winter Storms No Cv (Summer) 0.750 Cv (Winner) 0.750 Cv (Winter for 0.840 30	Surrey, PE3 8DW	Full Draina	ige Networ	k			Micro					
Eile Surfacewater Network.MDX Checked by BA nnovyze Network 2020.1.3 Det Eleving Outfall Details for Storm Metwork 2020.1.3 Dutfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.011 4.800 2.672 0.000 0 0 Detuction Criteria for Storm Intel Coefficient 0.800 Not Start (mins) Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m²/ha Storage 2.000 Hot Start Level (mm) Hot Start (mins) Outper/day 0.000 Mumber of Input Hydrographs 0 Number of Storage Structures 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Offline Controls 0 Number of Storage Structures 1 Number of Gel 248217 132177 SS 48217 32177 Data Type Point Numer Storms No <th>Date 31/03/2024 20:36</th> <th>Designed I</th> <th>by IO</th> <th></th> <th></th> <th></th> <th></th>	Date 31/03/2024 20:36	Designed I	by IO									
Innovyze Network 2020.1.3 Network 2020.1.3 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) (m) 1.011 4.800 2.672 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 100*/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Oline Controls 1 Number of Time/Area Diagrans 0 Number of Offline Controls 0 Number of Real Time Controls 0 Number of Oline Controls 0 100 FEH Rainfall Model FEH Return Period (years) 2013 Site Location GB 248217 132177 SS 48217 32177 Data Type Point Summer Storms No	ile Surfacewater Network.MDX	Checked b	v BA									
Introduction Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) (m) (m) I. Level (mm) (mm) (m) (m) Interval Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) (m) (m) (m) (m) Outfall Outfall C. Level I. Level (mm) (mm) (m) Interval Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (m) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 0 Synte Location GB 248217 132177 SS 48217 32177	nnovyze	Network 2	020 1 3									
Decention of the problem of the proble												
Outfall Pipe NumberOutfall C. Level I. LevelMin MameD. J. W MNameName(m)(m)I. Level (mm)(mm)1.0114.8002.6720.00000IntervalVolumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000 MADD Factor * 10m'/ha Storage 2.000 Inter Coefficient 0.800Areal Reduction Factor 1.000MADD Factor * 10m'/ha Storage 2.000 Inter Coefficient 0.800Hot Start (mins)0Inter Coefficient 0.800 Run Time (mins)Areal Reduction Factor 1.000O Flow per Person per Day (1/per/day) 0.000Manhole Headloss Coeff (Global) 0.500Run Time (mins)Foul Sewage per hectare (1/s) 0.000Output Interval (mins)Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0Extern Period (years)Number of GB 248217 132177 SS 48217 32177 Data TypeData TypePoint Summer StormsWinter StormsNo CY (Summer)O' Summer Jourdin (mins)0.750 CY (Summer)Cy Summer StoresNo No Storm Duration (mins)Additional File0.750 CY (Summer)Storm Duration (mins)30	Free Flowing Outfall Details for Storm											
<pre>Index Number Name (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)</pre>	Outfall Outfal Ding Number Name	ll C. Level I	. Level	Min	D,L	W (
1.014.802.6720.0000BIOLING CONF 0.01ADDITION CONF 0.010MADITION CONF 0.0100MADITION CONF 0.0100CONFMADITION CONF 0.0100	Fipe Number Name	(m)	(m) 1	(m)	(1111)	(11111)						
Sinulation Criteria for StoreVolumetric Runoff Coeff 0.750Additional Flow - % of Total Flow 0.000Areal Reduction Factor 1.000MADD Factor * 10m³/ha Storage 2.000Atot Start (mins)0Inlet Coefficient 0.800Atot Start Level (mm)0 Flow per Person per Day (1/per/day) 0.000Manhole Headloss Coeff (Global) 0.500Run Time (mins)Foul Sewage per hectare (1/s) 0.000Output Interval (mins)Number of Input Hydrographs 0 Number of Storage Structures 1Number of Offline Controls 1 Number of Time/Area Diagrams 0Number of Offline Controls 0 Number of Real Time Controls 0Number of Offline Controls 0 Number of Real Time Controls 0FEH Rainfall ModelFEHReturn Period (years)100FIF Rainfall Ge 248217 132177 SS 48217 32177Data TypePointSummer StormsNesWinter StormsNoC (sumer)0.750C (sumer)0.750C (sumer)0.400Storn Duration (mins)30	1.011	4.800	2.672	0.000	0	0						
Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000 Hot Start (mins) 0 Inlet Coefficient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 248217 132177 SS 48217 32177 Data Type Point Summer Storms Yes Winter Storms No Cv (Summer) 0.750 Cv (Winter) 0.840 Storm Duration (mins) 30	<u>S</u>	imulation Criter	ia for Storn	<u>n</u>								
Number of Offline Controls 0 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FEH Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 248217 132177 SS 48217 32177 Data Type Point Summer Storms Yes Winter Storms No Cv (Summer) 0.750 Cv (Winter) 0.840 Storm Duration (mins) 30	Areal Reduction Fact Hot Start (min Hot Start Level (m Manhole Headloss Coeff (Globa Foul Sewage per hectare (1/	or 1.000 (s) 0 (m) 0 Flow (1) 0.500 (s) 0.000	MADD Fa	actor * Inl son per Output	10m ³ /r et Coe Day (] Run Ti Interv	a Sto ffiec /per/ me (m ral (m	rage 2.000 ient 0.800 day) 0.000 ins) 60 ins) 1					
Synthetic Rainfall DetailsRainfall ModelFEHReturn Period (years)100FEH Rainfall Version2013Site Location GB 248217 132177 SS 48217 32177Data TypePointSummer StormsYesWinter StormsNoCv (Summer)0.750Cv (Winter)0.840Storm Duration (mins)30	Number of Input Hyd: Number of Online (rographs 0 Nu Controls 1 Nu	mber of S mber of T	torage : ime/Area	Struct a Diag	ures 1 rams (1 0					
Rainfall ModelFEHReturn Period (years)100FEH Rainfall Version2013Site Location GB 248217 132177 SS 48217 32177Data TypePointSummer StormsYesWinter StormsNoCv (Summer)0.750Cv (Winter)0.840Storm Duration (mins)30	Number of Input Hyd: Number of Online (Number of Offline (rographs 0 Nu Controls 1 Nu Controls 0 Nu	mber of S mber of T mber of R	torage : ime/Area eal Time	Struct a Diag e Cont	ures 1 rams (rols (1 0 0					
Return Period (years)100FEH Rainfall Version2013Site Location GB 248217 132177 SS 48217 32177Data TypePointSummer StormsYesWinter StormsNoCv (Summer)0.750Cv (Winter)0.840Storm Duration (mins)30	Number of Input Hyd: Number of Online (Number of Offline (rographs 0 Nu Controls 1 Nu Controls 0 Nu <u>Synthetic Rainf</u>	mber of S mber of T mber of R all Details	torage s ime/Area eal Time	Struct a Diag e Cont	ures 1 rams (rols (1 0 0					
FEH Rainfall Version2013Site Location GB 248217 132177 SS 48217 32177Data TypePointSummer StormsYesWinter StormsNoCv (Summer)0.750Cv (Winter)0.840Storm Duration (mins)30	Number of Input Hyd: Number of Online (Number of Offline (Rainfall	rographs 0 Nu Controls 1 Nu Controls 0 Nu <u>Synthetic Rainf</u> Model	mber of S mber of T mber of R <u>all Details</u>	torage (ime/Area eal Time	Struct a Diag e Cont I	ures 1 rams (rols ('EH	1 0 0					
Site Location GB 248217 132177 SS 48217 32177 Data Type Point Summer Storms Yes Winter Storms No Cv (Summer) 0.750 Cv (Winter) 0.840 Storm Duration (mins) 30	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y	rographs 0 Nu Controls 1 Nu Controls 0 Nu <u>Synthetic Rainf</u> Model zears)	mber of S mber of T mber of R all Details	torage : ime/Area eal Time	Struct a Diag e Cont I 1	ures 1 rams (rols ('EH .00	1 0 0					
Data TypeFormSummer StormsYesWinter StormsNoCv (Summer)0.750Cv (Winter)0.840Storm Duration (mins)30	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve	rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model Years) ersion	mber of S mber of T mber of R all Details	torage : ime/Area eal Time	Struct a Diag e Cont I 200	ures 1 rams (rols ('EH .00 113	1 0 0					
Winter StormsNoCv (Summer)0.750Cv (Winter)0.840Storm Duration (mins)30	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve Site Loc	rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model years) ersion cation GB 2482	mber of S mber of T mber of R all Details 217 132177	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont I 20 17 321	ures 1 rams (rols (°EH .00 113 .77	1 0 0					
Cv (Summer) 0.750 Cv (Winter) 0.840 Storm Duration (mins) 30	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve Site Loc Data Summer S	rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms	mber of S mber of T mber of R all Details 217 132177	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont I 20 17 321 Poi	ures 1 rams (rols (EH .00 113 .77 .nt (es	1 0 0					
Cv (Winter)0.840Storm Duration (mins)30	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve Site Loo Data Summer S Winter S	rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms	mber of S mber of T mber of R all Details 217 132177	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi	ures 1 rams (rols (EH .00 113 .77 .nt (es No	1 0 0					
Storm Duration (mins) 30	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su	rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms Storms ammer)	mber of S mber of T mber of R all Details 217 132177	torage 3 ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 3 3	ures 1 rams (rols (CEH .00 113 .77 .nt Ces No 250	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su Cv (Wi	rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms Storms immer) .nter)	mber of S mber of T mber of R all Details 217 132177	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 0.7 0.8	TEH CO CO CO CO CO CO CO CO CO CO CO CO CO	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su Cv (Wi Storm Duration (rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model years) ersion cation GB 2482 a Type Storms Storms ummer) .nter) (mins)	mber of S mber of T mber of R all Details 217 132175	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 0.7 0.7	ures 1 rams (rols (EH .00 113 .77 .nt Ces No 250 30	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve Site Loc Data Summer S Winter S CV (Su CV (Wi Storm Duration (rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms storms immer) .nter) (mins)	mber of S mber of T mber of R all Details 217 132175	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 0.7 0.7	ures 1 rams (rols (PEH .00 113 .77 .nt ?es No 550 30	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Return Period (y FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su Cv (Su Cv (Wi	rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms storms mmmer) .nter) (mins)	mber of S mber of T mber of R <u>all Details</u> 217 132177	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 0.7 0.8	ures 1 rams (rols (2EH .00 113 .77 .nt 2es No 50 440 30	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Return Period (y FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su Cv (Wi Storm Duration (rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms storms mmmer) .nter) (mins)	mber of S mber of T mber of R all Details 217 132177	torage 3 ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 0.7 0.8	ures 1 rams (rols (2 EH .00 113 .77 .nt (es No 250 30	1 0 0					
	Number of Input Hyd Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su Cv (Wi Storm Duration (rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model years) ersion cation GB 2482 a Type Storms Storms ammer) .nter) (mins)	mber of S mber of T mber of R all Details 217 132177	torage 3 ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 3 0.5	ures 1 rams (rols (2 EH .00 113 .77 .nt Ces No 250 30	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su Cv (Wi Storm Duration (rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms Storms immer) .nter) (mins)	mber of S mber of T mber of R all Details	torage 3 ime/Area eal Time 7 SS 482	Struct a Diag e Cont 17 321 Poi 0.5	ures 1 rams (rols (2 EH .00 113 .77 .nt Ces No 250 30	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (y FEH Rainfall Ve Site Loc Data Summer S Winter S Cv (Su Cv (Wi Storm Duration (rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms Storms immer) .nter) (mins)	mber of S mber of T mber of R all Details	torage 3 ime/Area eal Time 7 SS 482	Struct a Diag e Cont 17 321 Poi 0.5	ures 1 rams (rols (2 0 1 1 3 77 .nt (es No 2 5 0 3 0 3 0	1 0 0					
	Number of Input Hyd: Number of Online (Number of Offline (Rainfall Return Period (FEH Rainfall Ve Site Loo Data Summer S Winter S Cv (Su Cv (Wi Storm Duration (rographs 0 Nu Controls 1 Nu Controls 0 Nu Synthetic Rainf Model vears) ersion cation GB 2482 a Type Storms Storms immer) .nter) (mins)	mber of S mber of T mber of R all Details 217 132175	torage : ime/Area eal Time 7 SS 482	Struct a Diag e Cont 1 20 17 321 Poi 0.7 0.7	ures 1 rams (rols () 13 .77 .nt 250 .40 .30	1 0 0					

HaskoningDHV UK Limited		Page 7									
Rightwell House	Outline Drainage Strategy										
Bretton, Peterborough	White Cross Offshore Windfarm										
Surrey, PE3 8DW	Full Drainage Network	Micco									
Date 31/03/2024 20:36	Designed by IO										
File Surfacewater Network.MDX	Checked by BA	Diallidye									
Innovyze	Network 2020.1.3										
Online Controls for Storm Hydro-Brake [®] Optimum Manhole: 14, DS/PN: 1.009, Volume (m ³): 2.6											
Unit Reference MD-SHE-0090-3800-1200-3800											
Desig Desian	Flow (1/s) 1.200										
	Flush-Flo™ Calculated										
	Objective Minimise upstream storage										
A	pplication Surface										
Dia	meter (mm) 90										
Invert	Level (m) 3.640										
Minimum Outlet Pipe Dia	meter (mm) 150										
Suggested Mannole Dia	meter (mm) 1200										
Control Po	ints Head (m) Flow (l/s)										
Design Point (Ca	alculated) 1.200 3.8										
	flush-flo™ 0.355 3.8 Kick-Flo® 0.735 3.0										
Mean Flow over H	Head Range - 3.3										
The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	been based on the Head/Discharge relation Should another type of control device of an these storage routing calculations with	onship for the ther than a ll be									
Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Depth (m) Flow (l/s) Depth (m)	Flow (l/s)									
0.100 2.8 1.200	3.8 3.000 5.8 7.000	8.7									
0.200 3.6 1.400	4.1 3.500 6.3 7.500	9.0									
0.300 3.8 1.600	4.3 4.000 6.7 8.000	9.2									
	4.6 4.500 7.0 8.500	9.5									
0.600 3.5 2.200	5.0 5.500 7.7 9.500	10.0									
0.800 3.2 2.400	5.2 6.000 8.1										
1.000 3.5 2.600	5.4 6.500 8.4										
©	1982-2020 Innovyze										

HaskoningDHV UK Limited		Page 8
Rightwell House	Outline Drainage Strategy	
Bretton, Peterborough	White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Mirro
Date 31/03/2024 20:36	Designed by IO	
File Surfacewater Network.MDX	Checked by BA	Diamage
Innovyze	Network 2020.1.3	

Storage Structures for Storm

Tank or Pond Manhole: 14, DS/PN: 1.009

Invert Level (m) 3.640

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000 350.0 1.200 673.0 1.201 673.0

Haskonii	ngDHV	UK Limited						Page 9)		
Rightwe	- I House	9			Outline Drainage	Strategy					
Bretton,	Peterb	orough		,	White Cross Offs	hore Windfa	m				
Surrey, P	E3 8DV	v		1	Full Drainage Ne	twork		Mic	(U		
Date 31/	03/202	4 20:36		1	Designed by IO						
File Surfa	acewat	er Network.N	IDX		Checked by BA			DICI	naye		
Innovyze	•			I	Network 2020.1.	3					
	<u>2 ye</u>	ear Return Per	iod Sumr	mary of Cr	itical Results by	Maximum Lev	vel (Rank 1) f	Elow 0.0	0.0		
Hot Start (mins) 0 MADD Factor * 10m ³ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0											
		FEH F Margin fo Duration	Rainfa Rainfall Site D Cv Cv Cv Dr Flood Profile	Synthet ll Model Version Location ata Type (Summer) (Winter) k Risk Wa Analysi (s) ns) 3	ic Rainfall D GB 248217 13 Arning (mm) 30 S Timestep F DTS Status 0, 60, 120, 1	etails 2177 SS 482 0.0 DVI Dine Inertia ON 80, 240, 36	FEH 2013 17 32177 Point 0.750 0.840 D Status OF a Status OF Summer and 0, 480, 600	ΥF ΥF Winter 0, 720,			
	960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 2, 30, 100 Climate Change (%) 0, 0, 50										
PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)		
	-	2.2. 2		y -							
1.000	01 02	30 Summer	2	+0% +0%	100/30 Summer	n -			4.542		
1.002	03	30 Summer	2	+0%	30/30 Summer				4.295		
2.000	16	30 Summer	2	+0%	-				5.443		
1.003	04	30 Summer	2	+0%	30/30 Summer	<u>.</u>			4.262		
1.004	05	30 Winter	2	+0읭	30/30 Summer	-			4.146		
3.000	H07	30 Summer	2	+0%	30/30 Summer	- -			5.115		
1.005	06	30 Winter	2	+0%	30/30 Summer	- -			4.111 5.114		
4.000	07	30 Summer	2	+03 +02	100/30 Summer	- -			J.114 / 87/		
1.006	09	30 Winter	2	+0%	30/30 Summer	- •			4.075		
5.000	10	30 Summer	2	+0응		-			5.370		
5.001	11	30 Summer	2	+0%					5.161		
1.007	12	30 Winter	2	+0읭	30/30 Summer	2			4.030		
1.008	13	30 Winter	2	+0%	30/30 Summer	-			3.998		
1.009	14	360 Winter	2	+0%	30/120 Winter	n. -			3.879		
1.010	15	Jou Winter	2	+Uš					3.389		
				©19	982-2020 Innovy	ze					

HaskoningDHV UK Limited		Page 10
Rightwell House	Outline Drainage Strategy	
Bretton, Peterborough	White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Mirro
Date 31/03/2024 20:36	Designed by IO	
File Surfacewater Network.MDX	Checked by BA	Diamage
Innovyze	Network 2020.1.3	

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
1.000	01	-0.258	0.000	0.04			2.7	OK	
1.001	02	-0.233	0.000	0.10			5.1	OK	
1.002	03	-0.218	0.000	0.14			7.5	OK	
2.000	16	-0.257	0.000	0.05			3.0	OK	
1.003	04	-0.205	0.000	0.21			12.7	OK	
1.004	05	-0.169	0.000	0.31			18.2	OK	
3.000	H07	-0.035	0.000	0.93			8.9	OK	
1.005	06	-0.082	0.000	0.52			30.3	OK	
4.000	07	-0.036	0.000	0.92			8.9	OK	
4.001	08	-0.192	0.000	0.28			16.8	OK	
1.006	09	-0.003	0.000	0.92			49.5	OK	
5.000	10	-0.230	0.000	0.12			8.8	OK	
5.001	11	-0.220	0.000	0.16			8.9	OK	
1.007	12	-0.068	0.000	0.57			55.6	OK	
1.008	13	-0.027	0.000	1.00			52.9	OK	
1.009	14	-0.136	0.000	0.02			3.7	OK	
1.010	15	-0.336	0.000	0.02			3.7	OK	

askoningD	HV UK Li	mited						P	age 11
ghtwell H	ouse			Outli	ne Drainag	ge Strategy			
etton, Pet	terborou	gh		Whit	e Cross Of	fshore Wind	farm		
rrey, PE3	8DW			Full C	Drainage N	etwork			Mirm
ate 31/03/	/2024 20:	:36		Desig	ned by IO				
e Surface	water Ne	twork.MDX		Chec	ked by BA				יומו ומקנ
novyze				Netw	ork 2020.1	L.3		I	
	2 year Re	eturn Period S	ummary c	of Critical	Results by	<u>Maximum I</u>	<u>evel (Rank</u>	<u>1) for Stor</u>	<u>m</u>
	10 /1 <i>0</i>					Timet (II)		0	Water
PN	Name	Storm Pe	eriod Ch	ange S	urcharge	First (1) Flood	Overflow	Act.	(m)
					. .				
1.011	16 30	60 Winter	2	+0%					2.930
		Surcharged	Flooded			Half Drai	in Pipe		
DN	US/MH	Depth	Volume	Flow /	Overflow	7 Time	Flow		Level
PN	Name	(10)	(m°)	cap.	(1/5)	(mins)	(1/S) S	catus Ex	ceeded
1.011	. 16	-0.335	0.000	0.02			3.7	OK	

Haskoni	ingDHV	UK Limited							Page 1	2		
Rightwe	ell Hous	e		(Outline Drain	age St	rategy					
Bretton	, Peterł	oorough		١	Nhite Cross (Offsho	re Windfar	m				
Surrey,	PE3 8D	w		F	ull Drainage	Netw	ork		Mico			
Date 31	/03/20	24 20:36		[Designed by	0			Dcai			
File Surf	facewat	ter Network.N	NDX	C	Checked by B	A			DIGI	nage		
Innovyz	e			ſ	Network 202	0.1.3						
	<u>30 y</u>	/ear Return P	eriod Sumi	<u>mary of Cr</u> Simu actor 1.	titical Results	by Ma teria tiona	aximum Le	vel (Rank 1) i % of Total	Flow 0.00	00		
М	Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0											
		Number	of Offlir	ne Contro	ols 0 Numbe	er of	Real Tim	e Controls	0			
			Detef	Synthet	ic Rainfal	l Deta	ails					
		FEH	Rainfall Rainfall Site : Da Cv Cv	Il Model Version Location ata Type (Summer) (Winter)	GB 248217	13217	77 SS 482	FEH 2013 17 32177 Point 0.750 0.840				
		Margin f	or Flood	Risk Wa	rning (mm)	300.	0 0 0 0 0 0 0) Status OF	' न '			
		5	Drafila	Analysi	s Timestep DTS Status	Fin O	e Inertia N	a Status OF	F			
Profile(s) Duration(s) (mins) 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 960, 140, 2160, 2880, 4320, 5760, 7200,												
	Re	turn Period Climate	(s) (yea Change	rs) (%)				2, 3	30, 100 0, 50			
PN	US/MH Name	Storm	Return Period	Climate Change	First () Surcharg	K) 1 ge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)		
1.000	01	30 Winte	r 30	+0%	100/30 Sur	nmer				4.566		
1.001	02	30 Winte:	r 30	+0% +0%	100/30 Sur	nmer				4.528		
2.000	16	30 Summe:	r 30	+0%	JU/JU BUI	uuiCT				5.464		
1.003	04	30 Summe	r 30	+0%	30/30 Sur	nmer				4.548		
1.004	05	30 Summe	r 30	+0%	30/30 Sur	nmer				4.534		
3.000	H07	30 Summe:	r 30	+0%	30/30 Sur	nmer				5.315		
4 000	06	30 Summer	r 30 r 30	+0봉 +0위	30/30 Sur	nmer				4.504 5 347		
4.001	08	30 Summe:	r 30	+0%	100/30 Sur	nmer				4.935		
1.006	09	30 Summe	r 30	+0%	30/30 Sur	nmer				4.402		
5.000	10	30 Summe:	r 30	+0%						5.402		
5.001	11	30 Summe:	r 30	+0%	20/20 0					5.199		
1.008	12 13	30 Summe: 480 Winter	r 30 r 30	+U% +N%	30/30 Sur 30/30 Sur	nmer				4.095		
1.009	14	480 Winte	r 30	+0%	30/120 Win	nter				4.094		
1.010	15	1440 Summe	r 30	+0%						3.389		
				©19	982-2020 Inn	ovyze						

HaskoningDHV UK Limited		Page 13
Rightwell House	Outline Drainage Strategy	
Bretton, Peterborough	White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Mirro
Date 31/03/2024 20:36	Designed by IO	
File Surfacewater Network.MDX	Checked by BA	Diamage
Innovyze	Network 2020.1.3	

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
1.000	01	-0.234	0.000	0.09			5.2	OK	
1.001	02	-0.033	0.000	0.31			16.4	OK	
1.002	03	0.033	0.000	0.44			23.0	SURCHARGED	
2.000	16	-0.236	0.000	0.10			6.3	OK	
1.003	04	0.081	0.000	0.50			30.0	SURCHARGED	
1.004	05	0.219	0.000	0.66			38.9	SURCHARGED	
3.000	Н07	0.165	0.000	1.88			18.0	SURCHARGED	
1.005	06	0.311	0.000	0.91			53.3	SURCHARGED	
4.000	07	0.197	0.000	1.82			17.6	SURCHARGED	
4.001	08	-0.131	0.000	0.60			35.6	OK	
1.006	09	0.324	0.000	1.87			101.1	SURCHARGED	
5.000	10	-0.198	0.000	0.25			18.2	OK	
5.001	11	-0.182	0.000	0.33			18.1	OK	
1.007	12	0.103	0.000	1.22			119.0	SURCHARGED	
1.008	13	0.070	0.000	0.42			22.3	SURCHARGED	
1.009	14	0.079	0.000	0.02			3.7	SURCHARGED	
1.010	15	-0.336	0.000	0.02			3.7	OK	

HaskoningDHV UK Limited		Page 14
Rightwell House Bretton, Peterborough	Outline Drainage Strategy White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Mirro
Date 31/03/2024 20:36	Designed by IO	Dcainago
File Surfacewater Network.MDX	Checked by BA	Diamage
Innovyze	Network 2020.1.3	·

PN	US/MH Name	Storm	Return Period	Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
1.011	16	60 Summer	30	+0%					2.930
PN	US/MH Name	Surcharg Depth (m)	ed Floo Volu (m³	ded me Flow) Cap	/ Overflor . (l/s)	Half Dra W Time (mins)	in Pipe Flow (1/s) :	Le Status Exc	eeded

1.011 16 -0.335 0.000 0.03 3.8 OK

Haskoni	ingDHV	UK Limited							Page 1	5
Rightwe	ell Hous	e		C	Outline Dr	ainage S	trategy			
Bretton	, Peterl	orough		۱ ۱	Nhite Cro	ss Offsho	ore Windfa	'n		
Surrey,	PE3 8D	N		F	ull Draina	age Netw	vork		Mico	
Date 31	/03/20	24 20:36		[Designed	by IO			Dcai	סחבח
File Surf	facewat	er Network.M	DX	C	Checked b	y BA			DIGI	lage
Innovyz	е			r	Network 2	2020.1.3				
М	<u>100</u>	year Return Pe Areal Redu Hot Star Headloss Co	riod Sum	<u>Simu</u> actor 1. mins) (mm) obal) 0.	ritical Res	Criteria ddition MADD w per Po	<u>Aaximum Le</u> al Flow - Factor * In: erson per	<pre>% of Total 10m³/ha St Let Coeffie Day (1/per</pre>	for Storm Flow 0.00 orage 2.00 cient 0.80 /day) 0.00	00 00 00 00
	FOUL	Number of Number Number	Input H of Onlir f Offlir	lydrograp Contro Contro	obs 0 Nu ols 1 Nu ols 0 Nu	mber of mber of mber of	Storage Time/Are Real Tim	Structures a Diagrams e Controls	1 0 0	
	Re	FEH R Margin fo Duration turn Period(Climate	Rainfal ainfall Site I Da Cv Cv or Flood Profile (s) (min s) (yea: Change	Synthet: Il Model Version Location ata Type (Summer) (Winter) Risk Wa Analysi (s) ns) 3((%)	ic Rainf GB 2482 rning (m s Timest DTS Stat 0, 60, 1 960, 14	all Det 17 1321 m) 300 cep Fin cus (20, 180 40, 216	ails 77 SS 482 .0 DVI ne Inertia DN , 240, 36	FEH 2013 17 32177 Point 0.750 0.840 0 Status OF a Status OF Summer and 0, 480, 600 4320, 5760, 8640, 2, 3 0,	F F 9, 720, 7200, 10080 80, 100 0, 50	
PN	US/MH Name	Storm	Return Period	Climate Change	First Surch	(X) arge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
1 000	∩1	30 Winter	100	+50%	100/30	Summer				5 581
1.001	02	30 Winter	100	+50%	100/30	Summer				5.568
1.002	03	30 Winter	100	+50%	30/30	Summer				5.555
2.000	16	30 Winter	100	+50%	20/22	0				5.550
1.003	04	30 Winter	100	+50%	30/30	Summer				5.537
3 000	H07	30 Summer	100	+50%	30/30	Summer				5.496
1.005	06	30 Winter	100	+50%	30/30	Summer				5.423
4.000	07	30 Summer	100	+50%	30/30	Summer				6.044
4.001	08	30 Summer	100	+50%	100/30	Summer				5.259
1.006	09	30 Summer	100	+50%	30/30	Summer				5.139
5.000	10	30 Summer	100	+50%						5.448
5.001	11	30 Summer	100	+50%	30/20	Cummor				5.254
1.008	12 13	960 Winter	100	+50% +50%	30/30	Summer				4.592
1.009	14	960 Winter	100	+50%	30/120	Winter				4.591
1.010	15	1440 Summer	100	+50%						3.389
				©19	82-2020	nnovvze	•			

HaskoningDHV UK Limited		Page 16
Rightwell House	Outline Drainage Strategy	
Bretton, Peterborough	White Cross Offshore Windfarm	
Surrey, PE3 8DW	Full Drainage Network	Mirro
Date 31/03/2024 20:36	Designed by IO	
File Surfacewater Network.MDX	Checked by BA	Diamage
Innovyze	Network 2020.1.3	

	US/MH	Surcharged Depth	Flooded Volume	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
1.000	01	0.781	0.000	0.13			7.8	FLOOD RISK	
1.001	02	1.006	0.000	0.50			26.6	SURCHARGED	
1.002	03	1.041	0.000	0.59			31.2	SURCHARGED	
2.000	16	-0.150	0.000	0.18			10.8	OK	
1.003	04	1.070	0.000	0.76			45.4	SURCHARGED	
1.004	05	1.181	0.000	0.98			57.9	SURCHARGED	
3.000	H07	0.850	0.000	3.14			30.0	SURCHARGED	
1.005	06	1.230	0.000	1.61			94.8	SURCHARGED	
4.000	07	0.894	0.000	3.13			30.3	FLOOD RISK	
4.001	08	0.194	0.000	1.01			60.1	SURCHARGED	
1.006	09	1.061	0.000	3.13			169.3	SURCHARGED	
5.000	10	-0.152	0.000	0.48			35.1	OK	
5.001	11	-0.127	0.000	0.63			35.0	OK	
1.007	12	0.496	0.000	0.27			26.4	SURCHARGED	
1.008	13	0.567	0.000	0.50			26.3	FLOOD RISK	
1.009	14	0.576	0.000	0.02			3.7	FLOOD RISK	
1.010	15	-0.336	0.000	0.02			3.7	OK	

HaskoningDHV UK Li	mited			Page 17
Rightwell House		Outline Drainage Stra	ategy	
Bretton, Peterborou	gh	White Cross Offshore	e Windfarm	
Surrey, PE3 8DW		Full Drainage Networ	rk	Mirro
Date 31/03/2024 20	:36	Designed by IO		Drainage
File Surfacewater Ne	etwork.MDX	Checked by BA		bidinage
Innovyze		Network 2020.1.3		
<u>100 year F</u> US/MH PN Name	Return Period Summary of Return Clin Storm Period Cha	Critical Results by Ma mate First (X) Fir ange Surcharge F	ximum Level (Rank 1) for S st (Y) First (Z) Over lood Overflow Ac	Water flow Level t. (m)
1 011 1 0 10	100	. 500		0.000
1.011 16 100	J80 Summer 100	+50%		2.930
US/MH PN Name	Surcharged Flooded Depth Volume F (m) (m ³)	Hal low / Overflow Cap. (1/s) (1	f Drain Pipe Time Flow mins) (l/s) Status	Level Exceeded
1.011 16	-0.335 0.000	0.03	3.7 ОК	
		1982-2020 Ιπροναζα		

Annex 4: Water Quality

SIMPLE INDEX APPROACH: TO		HRW shall not be liable for any direct or indirect damage claim, loss, HRW has been informed of the possibility of the same. The user he action taken against HRW that is related in any way to the use of th not guarantee that the tool's functions meet the requirements of any	cost, expense or liability howsoever arising out of the use or impossibility bey indemnifies RW from and against any damage clain, loss, expense tool or any reliance made in respect of the output of such use by any p person, nor that the tool is free from errors.	ty to use the tools, even when or liability resulting from any berson whatsoever. HRW does		
1. The steps set out in the tool should be applied for	r each inflow or 'runoff area' (ie each impermeable sur	ace area separately discharging to a SuDS component).				
2. The supporting 'Design Conditions' stated by the	tool must be fully considered and implemented in all c	ses.				
3. The process that is automated in this tool is desc	ribed in the SuDS Manual, Chapter 26 (Section 26.7)					
3. Relevant design examples are included in the Sul	DS Manual Appendix C.					
4. Each of the steps below are part of the process s	et out in the flowchart on Sheet 3.					
5. Sheet 4 summarises the selections made below a	Sheet 4 summarises the selections made below and indicates the acceptability of the proposed SuDS components.					
6. Interception should be delivered for all upstrea criteria set out in Chapter 4 of the SuDS Manual	. Interception should be delivered for all upstream impermeable areas as part of the strategy for water quantity and quality control for the site. This is required in order to deliver both of the water quality riterias at out in Chapter 4 of the SuDS Manual					
DROP DOWN LIST	DROP DOWN LIST RELEVANT INPUTS NEED TO BE SELECTED FROM THESE LISTS, FOR EACH STEP					
USER ENTRY	USER ENTRY CELLS ARE ONLY REQUIRED WHERE INDIC	ITED BY THE TOOL				
STEP 1: Determine the Pollution Hazard Index	for the runoff area discharging to the proposed SuDS s	cheme				
This step requires the user to select the appropriate	land use type for the area from which the runoff is occu	ring				
If the land use varies across the 'runoff area', either:						
- use the land use type with the highest Pollution	Hazard Index					
 apply the approach for each of the land use typ providing additional treatment. 	es to determine whether the proposed SuDS design is sufficient for all. If	is not, consider collecting more hazardous runoff separately and				
If the generic land use types suggested are not applicable, select 'O	her' and enter a description of the land use of the runoff area and agreed	ser defined indices in the row below the drop down lists.				
	Runoff Area Land Use Description	Pollution Hazard Indices Hazard Total Suspended Level Solids Metals Hydrocarbon	DESIGN CONDITIONS 1	2		

Select land use type from the drop down lis (or 'Other' if none applicable):	t					
\longrightarrow	Standard commercial yard or delivery area	Medium	0.7	0.6	This classification is not appropriate for haulage yards, lorry parks, waste management areas, or 0, 7 chemical storage/handing zones	
If the generic land use types in the drop down list above are not applicable, select 'Other' and enter a description of the land use of the unoff area and account user						
defined indices in this row:						
	Landuse Pollution Hazard Index	Medium	0.7	0.6 0	.7	

DESIG

STEP 2A: Determine the Pollution Mitigation Index for the proposed SuDS components

This step requires the user to select the proposed SuDS components that will be used to treat runoff - before it is discharged to a receiving surface waterbody or downstream infiltration component

If the runoff is discharged directly to an infiltration component, without upstream treatment, select 'None' for each of the 3 SuDS components and move to Step 2B

This step should be applied to evaluate the water quality protection provided by proposed SuDS components for discharges to receiving surface waters or downstream infiltration components (note: in England and Wates this will include components that allow any amount of infiltration, however small, even where infiltration is not specifically accounted for in the design).

If you have fewer than 3 components, select 'None' for the components that are not required

If the proposed component is bespoke and/or a proprietary treatment product and not generically described by the suggested components, then 'Proprietary treatment system' or 'User defined indices' should be selected and a description of the component and agreed user defined indices should be entered in the rows below the drop down lists

SuDS Component Description

	Pollution Mitigati	on Indices
Total Susper	nded	
Solids	Metals	Hydrocarbons

N CONDITIONS			
1	2	3	

Groundwater Protection Pollution Mitigation Index 0 0

0

STEP 2C: Determine the Combined Pollution Mitigation Indices for the Runoff Area

This is an automatic step which combines the proposed SuDS Pollution Mitigation Indices with any Groundwater Protection Pollution Mitigation Indices

	Comb Total Suspen	ined Pollution M	litigation Indices	
	Solids	Metals	Hydrocarbons	Note: If the total aggregated mitigation index is > 1 (which is not a realistic outcome), then the outcome is fixed at ">0.95". In this scenario, the proposed
Combined Pollution Mitigation Indices for the Runoff Area	0.7	0.7	0.75	components are likely to have a very high mitigation potential for reducing pollulant levels in the runoff and should be sufficient for any proposed land use (note: where risk assessment is required, this outcome would need more detailed verification).

STEP 2D: Determine Sufficiency of Pollution Mitigation Indices for Selected SuDS Components

This is an automatic step which compares the Combined Pollution Mitigation Indices with the Land Use Hazard Indices, to determine whether the proposed components are sufficient to manage each pollutant category type

When the combined mitigation index exceeds the land use pollution hazard index, then the proposed components are considered sufficient in providing pollution risk mitigation.

DESIGN CONDITIONS

In England and Wales, where the discharge is to protected surface waters or groundwater, an additional treatment component (ie over and above that required for standard discharges), or other equivalent protection, is required that provides environmental protection in the event of an unexpected pollution event or poor system performance. Protected avriation waters are those designated for dinking water abstraction. In: England and Wales, protected groundwater resources are defined as Source Protection 2000. Son 1. In Norther relativity, are precaultionary approach may be required and this should be checked with the environmental regulated basis.

Sufficiency of Pollution Mitigation Indices Total Suspended Solids Metals Hydrocarbons 1 Note: In order to meet both Water Quality criteria set out in the SuDS Manual (Chapter 4), Interception should be delivered for all impermeable areas wherever possible. Interception delivery and treatment may be met by the same components, but Sufficient Suf

Annex 5: Surface Water Connectivity Plan

